Near-Neoclassical Transport & Enhanced Stability in Reversed Shear Plasmas in TFTR

M.C. Zarnstorff,

S. Batha¹, R. Bell, M. Beer, Z. Chang, P. Efthimion, E. Fredrickson, C. Gimblett², J. Hastie², T. Hender², M. Hughes³, F. Levinton¹, J. Manickam, E. Mazzucato, D. Mikkelsen, S. Paul, M. Phillips³, A. Ramsey, G. Rewoldt, S. Sabbagh⁴, G. Schmidt, S. Scott, E. Synakowski, and the TFTR Group

Princeton Plasma Physics Laboratory

¹Fusion Physics & Technology, Inc.

²Culham Laboratory, UKAEA

³Northrup-Grumman, Inc.

⁴Columbia Univ.

8 November 1995 37th Annual APS/DPP Meeting Louisville, KY

Motivation

TFTR

Reversed central magnetic shear configurations are particularly attractive for advanced tokamak reactors

- -- predicted improved confinement and stability
- -- compatible with bootstrap current profile shape

Mounting experimental confirmation of the advantages of reversed magnetic shear from a number of machines.

Reversed magnetic shear can:

- increase TFTR stability limits
- increase the reactivity of TFTR plasmas
- extend the range of physics studies for
 - -- -physics
 - -- transport and stability of burning plasmas
 - -- integration of DT and advanced tokamak physics

Outline

- Formation
- Transport
- MHD Stability
- Future Directions

A Wide Range of Reversed Magnetic Shear Configurations Have Been Produced

- Curves from VMEC free-boundary fit to MSE, magnetics data, and kinetic pressure profile
- Have obtained 1.8 q_{min} 3.3 so far, r_{min}/a 0.5 during I_p flat-top
- Configuration is reliably obtainable, routinely available.

Reversed Shear made by NB Heating & CD during I_P Ramp

- Plasma is initiated at full size
 - -- force current to diffuse maximum distance
- Scenario is robust, reproducible
- q_{min} , r_{min} , and q(0) can be controlled by the prelude NBI timing, co/counter-mix, the I_P ramprate and final I_P

Core Confinement is Strongly Improved after Transition to ERS

- Observed $p(0)/\langle p \rangle$ range from ~ 6.5 to ~ 8
- L_{pi} ~ ion banana width due to high central q ion orbit squeezing effects
- Calculated bootstrap current ~80% of total Ip

Two Confinement Regimes Observed with Reversed Shear

- Two confinement regimes observed with reversed shear:
 (A) similar to supershots, convection dominated core,
 - low i, e
 - (B) sudden transition to reduced particle transport and thermal transport ERS mode (Enhanced Reversed Shear)
- Transition appears to require balanced NBI > 16 MW may have dependence on co/ctr mix of NBI may have dependence on q_{min} or r_{min}

Likely indicates that ion orbit squeezing is important!

Improved Neoclassical calculations under development:

- orbit squeezing effects via recent papers by Shaing and Hazeltine; Hinton and Kim
 modification of Hirshman-Sigmar equations
- comparison with Full Torus Gyrokinetic Neoclassical Simulation (Z. Lin, W. Tang, W. Lee)

The Transition Threshold is Not Just a Function of Power

- All cases have near-balanced injection in high-power phase
- Lower power correlates with later transition perhaps due to lower q_{min} ?
- Lowest power transition observed: $P_{NB} = 16MW$

Electron Particle Loss is a Small Fraction of the Fueling inside Reversal Surface

- Volume integrated electron continuity equation terms
 Indicates sources inside a flux surface and losses through a flux surface
- Source is dominated by beam fueling inside r/a ~ 0.9
 Wall source magnitude is measured by H array

De is Sharply Reduced after Transition

- – D n flux balance "effective" diffusivity
- full neoclassical flux calculation including off-diagonal terms (Houlberg, Shaing, & Hirshman)
- low diffusivity or large pinch?

Ion Energy Loss is a Small Fraction of the Heating Power

i is Sharply Reduced after Transition to below neoclassical level

Core Turbulence Dramatically Reduced in ERS

- change in fluctuation profile appears coincident with transition
- preliminary BES analysis indicates core fluctuations levels are reduced to 0.2%, substantially less than with monotonic q(r).

Density Sustainment after High Power Phase Confirms Low D_e

- High central density can be maintained with ~5 MW of NBI
- After step down of P_{NB}, density outside r_{min} decays density peaking rises
- Reverse transition at ~3.1 sec?

Hydrogenic transport is reduced in ERS

- Small Tritium puff in conjunction with neutron collimator measurements is used to study hydrogenic transport
- Core ion diffusivity is reduced in ERS, but similar outside reversed shear region.

Core Hydrogenic Diffusivity is Significantly Reduce in ERS Plasmas

- Tritium transport determined from response of 12 channel neutron collimator to a tritium gas puff.
- For r < 0.6 m, convective velocity consistent with neoclassical theory.
- In ERS mode, particle flux in RS region is consistent with neoclassical predictions.

Possible Transition Mechanism: p driven increase of shearing rates and decrease of instability growth rates

- 1. ExB flow shear stabilization, generated by p (Synakowski, 2F12; Diamond 7Q21)
- 2. Increase in fraction of trapped particles with favorable drift precession from high = q² Rd /dr due to strong Shafranov shift (M. Beer, 4Q08)
- 3. Peaking of density profile decreases ITG drive (S. Parker, 8IB3 and G. Rewoldt, 9P04)

TFTR

• Consistent with variation observed via Abel-inverted tangential visible-bremstrahlung array

-- see A. Ramsey, 9P.38

 Nonlinear gyrofluid simulations indicate that residual fluctuations may drive outward carbon flux that balances neoclassical pinch

 see M. Beer, 4Q.08

- Margin against high-n ballooning > factor of 2 at all radii. Robustly stable in core.
- This robust stability region extends to 80% of minor radius in some plasmas.
- Due to profile differences, some ERS plasmas can be near the ballooning limit outside r_{min}

Observed Saturated MHD Activity is Benign

- Observed on both RS and ERS plasmas
 No ERS specific MHD activity has been observed.
- May be resistive-kink mode? -- see T. Hender 9P.07
- No tearing-like MHD activity observed in plasma core. No sign of neoclassical tearing modes observed with monotonic q(r).
- Off-axis "sawteeth" are observed after the high-power phase, with m/n = 2/1 precursors.

Disruption Precurser in Reversed Shear is n=1 Ideal-like Mode

- Measured T_e evolution from ECE polychromator
 Similar measurements by reflectometer
- Disruption occured with $N^* = 3.5$, N = 1.7, N =
- Maximum achieved with ERS:

$$N^* = 3.8$$
, $N = 2.0$, without disruption

In contrast, for monotonic q(r) and similar pressure profiles, the N limit is observed to be ~ 1.3 .

- PEST calculates n=1 infernal mode becomes unstable at approximate N of disruption.
- Resistive stability agrees with ideal calculation at experimental Lundquist number S~10⁹.
- Resistive calculation indicates weak persistent n=2 and n=1 modes, observed in experiment.
- -- see: T. Hender 9P.07; J. Manickam 9P.08; M. Phillips 9Q.02; M. Hughes 9Q.01

- Optimization and control of MHD stability
 - -- Theory predicts increased $_{N}^{*}$ limits for increased $_{\min}$
 - Need to control q-profile evolution to avoid unstable equilibria at high
 (e.g. ~ integral q_{min})
- Understand transition and transport in new regime
 - -- scaling of transition and transport
 - -- control of barrier location
 - -- ash transport
- Integrate DT and Advanced Tokamak physics
 - -- heating dynamics and profile modifications
 - -- stability with reversed shear

20 MW of Fusion Power is a Reasonable Goal

- $^{\circ}$ N=2 calculated stable for all *n* (PEST) in this regime, and achieved experimentally
- Final n_e profile from equilibrium solution using observed P_e (with floor) T_e , T_i and equilibrium evolved using observed P_e , P_i (with floor), P_e P_i P_e P_i P_e P_i P_i
- Temperatures do not come to steady state! Q(0) > 5 when $Q(a) \sim 1$

CAUTION: this extrapolation is based on empirical transport coefficients in a new confinement regime, with no scaling information available.

Conclusions

- Reversed magnetic shear configurations can be easily produced and studied in present experiments
- The new ERS regime offers
 - -- extremely low core transport and turbulence
 - -- new insight into the causes and limits of transport, mechanisms for transport barriers
 - new possibilities for reactor design:
 Low D_e: pellet or low-energy beam fueling?
 Low i: -channeling? advanced fuels?
- Reversed magnetic shear configurations have higher stability limits that monotonic q-profiles for similar pressure profiles
- Reversed shear and ERS provide a path for TFTR to explore strong alpha-heating and its interaction with advanced tokamak configurations.